

Basilica R Client

	Quickstart
	Install the R client

	Embed some sentences

	Get an API key

	What next?

	Basilica R Client

	Vignettes
	Working with images

	Working with text

	Training a logistic regression from Twitter comments

Basilica R Client: Deep Feature Extraction for Images and Text

Word2Vec For Anything [https://www.basilica.ai]

Basilica [https://www.basilica.ai] allows you to easily augment your models with images and text. You send
us an image or a snippet of natural language text and we send you a vector of
features you can use to train your models.

Installation

You can install the released version of this package from Google cloud:

install.packages("https://storage.googleapis.com/basilica-r-client/basilica_0.0.2.tar.gz", repos=NULL)

or from Github (requires the devtools package):

devtools::install_github("basilica-ai/basilica-r-client")

(CRAN submission approval in progress)

Examples

This is a basic example which shows you how to solve a common problem:

Creating a Connection

Before embedding an image or text (getting a vector of features), you must first
connect to the API with a demo key. SLOW_DEMO_KEY is a key you can use for
testing with a low per-week limit, but you can create API keys for free at www.basilica.ai [https://www.basilica.ai/accounts/register/].

library('basilica')
Create a connection
You can use our `SLOW_DEMO_KEY` (it actually works) or create your own at basilica.ai
conn <- connect("SLOW_DEMO_KEY")

Embedding Text

Getting a vector of features for text:

sentences = c(
 "This is a sentence!",
 "This is a similar sentence!",
 "I don't think this sentence is very similar at all..."
)

Returns a data frame with 512 features for each of the 3 sentences
embeddings <- embed_sentences(sentences, conn=conn)
print(dim(embeddings)) # 3 512
print(embeddings) # [[0.8556405305862427, ...], ...]

print(cor(embeddings[1,], embeddings[2,])) # 0.8048559
print(cor(embeddings[1,], embeddings[3,])) # 0.6877435

Differences from Word2Vec

It’s important to know that the embedding you get for a sentence is completely
different from an embedding you would get with Word2Vec. Word2Vec returns a
word-level embedding, while basilica is trained on longer snippets of natural
language text (phrases, sentences, paragraphs). For that reason, results on models
where the context of the sentence matter (like sentiment analysis) will get much
better results with a sentence-level embedding than with a word embedding.

Embedding an Image

Getting a vector of features for images:

embeddings <- embed_image("/tmp/image.jpg", conn=conn)
print(dim(embeddings)) # 1 2048
print(embeddings) # [[0.8556405305862427, ...], ...]

Development

If you want to contribute to this client, here’s are some of the libraries and
commands you will need:

Setup

brew install qpdf

install.packages("devtools")
install.packages("usethis")
install.packages("testthat")

Building

When on a branch, make sure all these commands work and pass.

devtools::test()
devtools::document()
devtools::build_vignettes()
devtools::check()

Quickstart

Install the R client

First, install the R client.

install.packages("https://storage.googleapis.com/basilica-r-client/basilica_0.0.1.tar.gz", repos=NULL)

Embed some sentences

Let’s embed some sentences to make sure the client is working.

library('basilica')
conn <- connect("SLOW_DEMO_KEY")

sentences = c(
 "This is a sentence!",
 "This is a similar sentence!",
 "I don't think this sentence is very similar at all..."
)
embeddings <- embed_sentences(sentences, conn=conn)
print(embeddings)

[[0.8556405305862427, ...], ...]

Let’s also make sure these embeddings make sense, by checking that the
cosine distance between the two similar sentences is smaller:

print(cor(embeddings[1,], embeddings[2,]))
print(cor(embeddings[1,], embeddings[3,]))

0.8048559
0.6877435

Great!

Get an API key

The example above uses the slow demo key. You can get an API key of
your own by signing up at https://www.basilica.ai/accounts/register .
(If you already have an account, you can view your API keys at
https://www.basilica.ai/api-keys .)

What next?

	Read the documentation for the client: Basilica R Client

	See an in-depth tutorial on training an image model: How To Train
An Image Model With Basilica [https://www.basilica.ai/tutorials/how-to-train-an-image-model/]

Basilica R Client

	
basilica.connect(auth_key, server)

	Instantiates and returns a Basilica connection tied to a specific auth key and server. It also populates a global basilica_connection that is a copy of the returned connection. If a conn argument is not passed to an embed_* function, this global connection will be used.

	Parameters

	
	auth_key (str) – Basilica API key. You can view your auth keys at https://basilica.ai/auth_keys.

	server (str) – Basilica server to point to (Default: https://api.basilica.ai)

>>> conn <- connect("SLOW_DEMO_KEY") # Create a connection to pass to functions
embeddings <- embed_sentences(c("hello world"), conn=conn)

>>> connect("SLOW_DEMO_KEY") # Populate the global connection
embeddings <- embed_sentences(c("hello world"))
embeddings <- embed_sentences(c("hello world")) # Will both use the sameglobal connection

	
basilica.embed_sentence(sentence, model, version, conn, timeout)

	Get a vector of features for a sentence

	Parameters

	
	sentence – Sentence or string

	model (character()) – Name of the image model you wish to use. (Default: english)

	version (character()) – Version of the image model you wish to use. (Default: default)

	conn (environment()) – Basilica connection. Must be created with the connect function (Default: Global basilica_connection)

	timeout (number()) – Time (in seconds) before requests times out. (Default 5)

	Returns

	An embedding.

	Return type

	Matrix

	
basilica.embed_sentences(sentences, model, version, conn, timeout)

	Get a vector of features for a list of sentences

	Parameters

	
	sentence – Sentence or string

	model (character()) – Name of the image model you wish to use. (Default: english)

	version (character()) – Version of the image model you wish to use. (Default: default)

	conn (environment()) – Basilica connection. Must be created with the connect function (Default: Global basilica_connection)

	timeout (number()) – Time (in seconds) before requests times out. (Default 5)

	Returns

	An embedding.

	Return type

	Matrix

	
basilica.embed_image(image, model, version, conn, timeout)

	Get a vector of features for an image

	Parameters

	
	image (raw()) – Raw vector read from image file (JPEG or PNG)

	model (character()) – Name of the image model you wish to use. (Default: generic)

	version (character()) – Version of the image model you wish to use. (Default: default)

	conn (environment()) – Basilica connection. Must be created with the connect function (Default: Global basilica_connection)

	timeout (number()) – Time (in seconds) before requests times out. (Default 5)

	Returns

	An embedding.

	Return type

	Matrix

	
basilica.embed_image_file(image_path, model, version, conn, timeout)

	Get a vector of features for an image

	Parameters

	
	image_path – Path to an image (JPEG or PNG)

	model (character()) – Name of the image model you wish to use. (Default: generic)

	version (character()) – Version of the image model you wish to use. (Default: default)

	conn (environment()) – Basilica connection. Must be created with the connect function (Default: Global basilica_connection)

	timeout (number()) – Time (in seconds) before requests times out. (Default 5)

	Returns

	An embedding.

	Return type

	Matrix

	
basilica.embed_image_files(image_paths, model, version, conn, timeout)

	Get a vector of features for a list images

	Parameters

	
	image_paths – List of file paths to images (JPEG or PNG)

	model (character()) – Name of the image model you wish to use. (Default: generic)

	version (character()) – Version of the image model you wish to use. (Default: default)

	conn (environment()) – Basilica connection. Must be created with the connect function (Default: Global basilica_connection)

	timeout (number()) – Time (in seconds) before requests times out. (Default 5)

	Returns

	An embedding.

	Return type

	Matrix

	
basilica.embed_images(images, model, version, conn, timeout)

	Get a vector of features for a list images

	Parameters

	
	images (list()) – List of raw vectors read from image files (JPEG or PNG)

	model (character()) – Name of the image model you wish to use. (Default: generic)

	version (character()) – Version of the image model you wish to use. (Default: default)

	conn (environment()) – Basilica connection. Must be created with the connect function (Default: Global basilica_connection)

	timeout (number()) – Time (in seconds) before requests times out. (Default 5)

	Returns

	An embedding.

	Return type

	Matrix

Vignettes

	Working with images

	Working with text

	Training a logistic regression from Twitter comments

Working with images

Basilica provides 4 functions for working with images:

	embed_image

	embed_images

	embed_image_file

	embed_image_files

The embed_image_file and embed_image_files functions take a
characther vector (a string) with a file path pointing to an image. On
the other hand, embed_image and embed_images take a raw vector
obtained through readBin.

embed_image_file

download.file("https://www.basilica.ai/static/images/tutorial/dog-test-1.jpg", "/tmp/dog1.jpg")
download.file("https://www.basilica.ai/static/images/tutorial/dog-test-2.jpg", "/tmp/dog2.jpg")
download.file("https://www.basilica.ai/static/images/tutorial/cat-test-1.jpg", "/tmp/cat.jpg")

library('basilica')
conn <- connect("SLOW_DEMO_KEY")

embeddings = list()
embeddings[[1]] = embed_image_file("/tmp/dog1.jpg", conn=conn)
embeddings[[2]] = embed_image_file("/tmp/dog2.jpg", conn=conn)
embeddings[[3]] = embed_image_file("/tmp/cat.jpg", conn=conn)

print(cor(embeddings[[1]], embeddings[[2]]))
print(cor(embeddings[[1]], embeddings[[3]]))

embed_image_files

download.file("https://www.basilica.ai/static/images/tutorial/dog-test-1.jpg", "/tmp/dog1.jpg")
download.file("https://www.basilica.ai/static/images/tutorial/dog-test-2.jpg", "/tmp/dog2.jpg")
download.file("https://www.basilica.ai/static/images/tutorial/cat-test-1.jpg", "/tmp/cat.jpg")

library('basilica')
conn <- connect("SLOW_DEMO_KEY")

embeddings = embed_image_files(c("/tmp/dog1.jpg", "/tmp/dog2.jpg", "/tmp/cat.jpg"), conn=conn)

print(cor(embeddings[1,], embeddings[2,]))
print(cor(embeddings[1,], embeddings[3,]))

embed_image

download.file("https://www.basilica.ai/static/images/tutorial/dog-test-1.jpg", "/tmp/dog1.jpg")
download.file("https://www.basilica.ai/static/images/tutorial/dog-test-2.jpg", "/tmp/dog2.jpg")
download.file("https://www.basilica.ai/static/images/tutorial/cat-test-1.jpg", "/tmp/cat.jpg")

library('basilica')
conn <- connect("SLOW_DEMO_KEY")

embeddings = list()

f <- file("/tmp/dog1.jpg", "rb")
dog1_raw <- readBin(f, "raw", file.info("/tmp/dog1.jpg")[1, "size"])
close(f)
embeddings[[1]] = embed_image(dog1_raw, conn=conn)

f <- file("/tmp/dog2.jpg", "rb")
dog2_raw <- readBin(f, "raw", file.info("/tmp/dog2.jpg")[1, "size"])
close(f)
embeddings[[2]] = embed_image(dog2_raw, conn=conn)

f <- file("/tmp/cat.jpg", "rb")
cat_raw <- readBin(f, "raw", file.info("/tmp/cat.jpg")[1, "size"])
close(f)
embeddings[[3]] = embed_image(cat_raw, conn=conn)

print(cor(embeddings[[1]], embeddings[[2]]))
print(cor(embeddings[[1]], embeddings[[3]]))

embed_images

download.file("https://www.basilica.ai/static/images/tutorial/dog-test-1.jpg", "/tmp/dog1.jpg")
download.file("https://www.basilica.ai/static/images/tutorial/dog-test-2.jpg", "/tmp/dog2.jpg")
download.file("https://www.basilica.ai/static/images/tutorial/cat-test-1.jpg", "/tmp/cat.jpg")

library('basilica')
conn <- connect("SLOW_DEMO_KEY")

embeddings = list()

f <- file("/tmp/dog1.jpg", "rb")
dog1_raw <- readBin(f, "raw", file.info("/tmp/dog1.jpg")[1, "size"])
close(f)

f <- file("/tmp/dog2.jpg", "rb")
dog2_raw <- readBin(f, "raw", file.info("/tmp/dog2.jpg")[1, "size"])
close(f)

f <- file("/tmp/cat.jpg", "rb")
cat_raw <- readBin(f, "raw", file.info("/tmp/cat.jpg")[1, "size"])
close(f)

embeddings = embed_images(list(dog1_raw, dog2_raw, cat_raw), conn=conn)

print(cor(embeddings[1,], embeddings[2,]))
print(cor(embeddings[1,], embeddings[3,]))

Working with text

Basilica provides 2 functions for working with images:

	embed_sentence

	embed_sentences

The embed_sentence function takes a single characther vector (a
string) and returns a vector of features. The embed_sentences
functions takes a list of character vectors returns a matrix with a
feature vector on every row.

embed_sentece

sentences <- c(
 "This is a sentence!",
 "This is a similar sentence!",
 "I don't think this sentence is very similar at all..."
)

library('basilica')
conn <- connect("SLOW_DEMO_KEY")

embeddings <- list()
embeddings[[1]] <- embed_sentence(sentence[[1]], conn=conn)
embeddings[[2]] <- embed_sentence(sentence[[2]], conn=conn)
embeddings[[3]] <- embed_sentence(sentence[[3]], conn=conn)

print(cor(embeddings[[1]], embeddings[[2]]))
print(cor(embeddings[[1]], embeddings[[3]]))

embed_senteces

sentences <- c(
 "This is a sentence!",
 "This is a similar sentence!",
 "I don't think this sentence is very similar at all..."
)

library('basilica')
conn <- connect("SLOW_DEMO_KEY")

embeddings <- embed_sentences(sentences, conn=conn)

print(cor(embeddings[1,], embeddings[2,]))
print(cor(embeddings[1,], embeddings[3,]))

Training a logistic regression from Twitter comments

In this example, we’ll train a logistic regression to classify tweets
using only the natural language text found in these tweets. We’ll only
need about 800 tweets per user account.

Setup

To run this example, you will need the following packages.

install.packages("dplyr", "ROCR")

Step 1: Embedding all tweets

We’ll use a collection of about 800 tweets from Bill Gates and Kanye
West and train a logistic regression to predict (given a tweet) which
account the tweet belongs to. In order to do that, we’ll first load the
tweets from the basilica package.

library(jsonlite)
bill <- fromJSON(system.file("extdata/twitter/billgates.json", package="basilica"))
kanye <- fromJSON(system.file("extdata/twitter/kanyewest.json", package="basilica"))

Now that we’ve loaded the JSON files, we can embedded the text of these
tweets using Basilica.

library(basilica)
conn <- connect("05e19f1c-39de-ed9c-ae42-feab42f5f84d")

embeddings <- rbind(embed_sentences(bill[, 7], conn=conn), embed_sentences(kanye[, 7], conn=conn)) # 7 is the index of the text

Step 2: Running PCA + Cleaning Data

Now that we have these embeddings, we’ll want to run PCA and get the 100
features that explain the most variance. We’ll also add a column to the
matrix with the corresponding category each tweet belongs to.

pca <- prcomp(t(embeddings), center = TRUE,scale = TRUE)
features <- pca$rotation[,1:100]

type <- c(integer(dim(bill)[1]) + 1, integer(dim(kanye)[1]))
features <- cbind(type, features)
features <- data.frame(features[sample.int(nrow(features)),])

Step 3: Training the model

Finally, we can now train our model. In order to do that we’ll separate
out the data into training and test data.

library(dplyr)
train_data <- sample_frac(features, 0.8)
train_index <- as.numeric(rownames(train_data))
test_data <- features[-train_index,]

model <- glm(type ~ ., data = train_data, family = "binomial")

Step 4: Verifying Results

After training the model, we can verify who well it’s trained by taking
a look at the confusion matrix.

predict <- predict(model, newdata=test_data, type = 'response')
table(train_data$type, predict > 0.5)

library(ROCR)
ROCRpred <- prediction(predict, test_data$type)
ROCRperf <- performance(ROCRpred, 'tpr','fpr')
plot(ROCRperf, colorize = TRUE, text.adj = c(-0.2,1.7))

You have now trained a logistic regression with only the natural
language text of the tweets and 800 data points per category and getting
an R squared of about 0.80.

 Python Module Index

 b

 		 	

 		
 b	

 	
 	
 basilica	

Index

 B
 | C
 | E

B

 	
 	basilica (module)

C

 	
 	connect() (in module basilica)

E

 	
 	embed_image() (in module basilica)

 	embed_image_file() (in module basilica)

 	embed_image_files() (in module basilica)

 	
 	embed_images() (in module basilica)

 	embed_sentence() (in module basilica)

 	embed_sentences() (in module basilica)

Basilica R Client: Deep Feature Extraction for Images and Text

Word2Vec For Anything [https://www.basilica.ai]

Basilica [https://www.basilica.ai] allows you to easily augment your models with images and text. You send
us an image or a snippet of natural language text and we send you a vector of
features you can use to train your models.

Installation

You can install the released version of this package from Google cloud:

install.packages("https://storage.googleapis.com/basilica-r-client/basilica_0.0.2.tar.gz", repos=NULL)

or from Github (requires the devtools package):

devtools::install_github("basilica-ai/basilica-r-client")

(CRAN submission approval in progress)

Examples

This is a basic example which shows you how to solve a common problem:

Creating a Connection

Before embedding an image or text (getting a vector of features), you must first
connect to the API with a demo key. SLOW_DEMO_KEY is a key you can use for
testing with a low per-week limit, but you can create API keys for free at www.basilica.ai [https://www.basilica.ai/accounts/register/].

library('basilica')
Create a connection
You can use our `SLOW_DEMO_KEY` (it actually works) or create your own at basilica.ai
conn <- connect("SLOW_DEMO_KEY")

Embedding Text

Getting a vector of features for text:

sentences = c(
 "This is a sentence!",
 "This is a similar sentence!",
 "I don't think this sentence is very similar at all..."
)

Returns a data frame with 512 features for each of the 3 sentences
embeddings <- embed_sentences(sentences, conn=conn)
print(dim(embeddings)) # 3 512
print(embeddings) # [[0.8556405305862427, ...], ...]

print(cor(embeddings[1,], embeddings[2,])) # 0.8048559
print(cor(embeddings[1,], embeddings[3,])) # 0.6877435

Differences from Word2Vec

It’s important to know that the embedding you get for a sentence is completely
different from an embedding you would get with Word2Vec. Word2Vec returns a
word-level embedding, while basilica is trained on longer snippets of natural
language text (phrases, sentences, paragraphs). For that reason, results on models
where the context of the sentence matter (like sentiment analysis) will get much
better results with a sentence-level embedding than with a word embedding.

Embedding an Image

Getting a vector of features for images:

embeddings <- embed_image("/tmp/image.jpg", conn=conn)
print(dim(embeddings)) # 1 2048
print(embeddings) # [[0.8556405305862427, ...], ...]

Development

If you want to contribute to this client, here’s are some of the libraries and
commands you will need:

Setup

brew install qpdf

install.packages("devtools")
install.packages("usethis")
install.packages("testthat")

Building

When on a branch, make sure all these commands work and pass.

devtools::test()
devtools::document()
devtools::build_vignettes()
devtools::check()

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Basilica R Client

 		
 Quickstart

 		
 Install the R client

 		
 Embed some sentences

 		
 Get an API key

 		
 What next?

 		
 Basilica R Client

 		
 Vignettes

 		
 Working with images

 		
 embed_image_file

 		
 embed_image_files

 		
 embed_image

 		
 embed_images

 		
 Working with text

 		
 embed_sentece

 		
 embed_senteces

 		
 Training a logistic regression from Twitter comments

 		
 Setup

 		
 Step 1: Embedding all tweets

 		
 Step 2: Running PCA + Cleaning Data

 		
 Step 3: Training the model

 		
 Step 4: Verifying Results

_static/pyton-original.png

_static/pyton.png

_static/pyton-bw.png

_static/r.png

_static/up-pressed.png

_static/r-bw.png

_static/r-original.png

_static/up.png

